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Abstract 

X n Given a sequence of points { i}i=l on a regular quadric S: X T A X  = 0 C E d, d >1 3, we 
study the problem of constructing a G I rational quadratic spline curve lying on 5' that interpolates 
{ X ~ } ~ j .  It is shown that a necessary condition for the existence of a nontrivial interpolant is 
( X ~ A X 2 ) ( X T i A X i + I )  > 0, i = 1 , 2 , . . . , n -  1. Also considered is a Hermite interpolation 
problem on the quadric S: a biarc consisting of two conic arcs on S joined with G ~ continuity is 
used to interpolate two points on S and two associated tangent directions, a method similar to the 
biarc scheme in the plane (Bolton, 1975) or space (Sharrock, 1987). A necessary and sufficient 
condition is obtained on the existence of a biarc whose two arcs are not major elliptic arcs. In 
addition, it is shown that this condition is always fulfilled on a sphere for generic interpolation 
data. 

I. Introduction 

1.1. Problems 

Given a sequence of points {Xi}i~l  on a quadric S c E a, d /> 3, we consider 
constructing a G 1 curve to interpolate {Xi}~l  such that the constructed curve lies on S. 
We will use the rational quadratic spline curve to solve the above problem. Clearly, the 
rational quadratic spline is the simplest curve possible for this problem. 
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There has been much research in the literature on rational quadratic spline curves, 
or conic spline curves. Shape design using conic arcs is discussed in (Bookstein, 1979; 
Pavlidis, 1983; Pratt, 1985; Lee, 1987; Farin, 1989). Biarcs consisting of two conic arcs 
have also been studied. Circular biarcs in the plane are studied in (B6zier, 1972; Bolton, 
1975; Sabin, 1976). Circular biarcs in 3D space are considered in (Sharrock, 1987; 
Rossignac and Requicha, 1987; Wang and Joe, 1992). Curve design on a sphere has been 
discussed by a number of researchers, e.g., (Shoemake, 1985; Pletinckx, 1989; Wang 
and Joe, 1993; Kim et al., 1995), for orientation interpolation in computer animation. 
In particular, rational curves on a sphere as well as on general quadrics are studied in 
(Hoschek and Seeman, 1992; Dietz et al., 1993, 1995). 

The first problem we discuss is to construct a smooth rational quadratic spline curve 
on a quadric with a single conic arc between two consecutive data points. We show how 
to construct such a spline curve, and prove that if a solution exists, then all the line 
segments XiXi+l ,  i = 1 , . . . ,  n - 1, are on the same side of  S and the curve has d - 2 
degrees of  freedom. The spline curve thus constructed does not have local control. The 
second problem we discuss is to use a biarc consisting of two conic arcs joined with G 1 
continuity on a quadric 5' to interpolate two points X0 and X~ and tangent directions at 
X0 and Xl ,  respectively. 

The remainder of  the paper is organized as follows. In the rest of this section relevant 
preliminaries are reviewed. Sections 2 and 3 deal with the two problems mentioned above, 
respectively. Section 3 also describes an algorithm which uses the biarc interpolant to 
interpolate a sequence of points on a quadric. Section 4 contains concluding remarks. 

1.2. Preliminaries 

A point in E d is represented by homogeneous coordinates X = (xl,  • • •, Xd+l )T, where 
the x~ are reals and at least one x~ # 0. If  Xd+l = 0, X is a point at infinity with respect 
to E d. The point represented by homogeneous coordinates X is also denoted by (X).  

A finite point X = ( x l , . . . , x d + l )  y E E d is in normalized homogeneous form if 
xa+t = 1. Tangent directions are represented by points at infinity. If To is a point at 
infinity, then - T o  stands for the opposite direction of To, though To and - T o  represent 
the same point at infinity. 

A quadric S C E a is represented by X T A X  = 0,  where A is a (d + 1) × (d + 1) 
real symmetric matrix. We will consider only the real regular quadric S, i.e., S has no 
singular points in real projective space. The condition for X T A X  = 0 to be a real regular 
quadric is that A is indefinite and nonsingular. A regular quadric is irreducible, i.e., it is 
not composed of hyperplanes (Semple and Kneebone, 1952). 

For a regular quadric S, the tangent hyperplane of S at a point X0 c S is X ~ A X  = O. 
Like on a quadric surface in E 3, if a straight line is contained entirely in S in E a, it is 
called a generating line of S. It is easily verified that two distinct points X0 and Xi on 
S are on the same generating line of  S if and only if X ~ A X I  = O. 

A conic that is composed of straight lines is said to be degenerate, otherwise non- 
degenerate. A conic arc refers to a G l continuous and finite piece of  conic section, 
including a line segment. A nondegenerate conic arc refers to an arc on a nondegenerate 
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conic; therefore there is a unique 2D plane containing a nondegenerate conic arc. A conic 
arc can be represented in the following standard Bgzierform (Patterson, 1986) 

P(u) = PoBo,2(u) + wP1B,,2(u) + P2B2,2(u), u E [0, 1]. (1) 

Here P0 and P2 are in normalized homogeneous form. If  PI is fixed, two weights w with 
opposite signs give rise to two complementary arcs of  the same conic (Lee, 1987); both 
arcs are continuous if and only if the conic is an ellipse. 

A curve segment (1) is continuous if wza+l >1 O, where xa+l is the last component 
of  Pl. When w --- 0 the curve becomes the line segment PoP2; when :ea+l = 0 and 
w ¢ 0 the curve is half an ellipse. In the following we will mainly consider the case 
w ~ 0, as it will be shown later on that straight line segments do not appear in a general 
conic spline curve on a regular quadric. 

Definition 1.1. Let Xd+l be the last component of  PI in (1). A weight w ¢ 0 is a proper 
weight if wxa+~ > 0 or w > 0 and Xd+I = 0; it is a complementary weight if wxd+~ < 0 
or w < 0 and :ra+l = 0. 

Let the control polygons of  two B6zier segments be XoYoXl and X1YIX2 respectively. 
Then we have the following result, whose trivial proof is omitted. 

Lemma 1.2. Suppose Yo, X1 and Yl are collinear. When the joint point Xl  is between 
Yo and YI, the two Bgzier curves join smoothly if and only if they both take the proper 
weights or the complementary weights simultaneously. When X1 is not between Yo and 
Yl, the two Bdzier curves join smoothly if and only if one of two curves takes the proper 
weight and the other takes the complementary weight. 

2. Point interpolation on a quadric 

2.1. Local representation 

Let { X i } ~ l ,  n ~> 3, be a point sequence in normalized homogeneous form on a 
quadric S: X T A X  = 0 C E a, d ~> 3. Assume that {X~}i~l are on the same real 
component of  S. Our goal is to construct a G 1 rational quadratic spline curve on S to 

X n interpolate { i}i=~- First we consider the existence and properties of  a single rational 
quadratic B6zier curve on S interpolating two consecutive points X,  and X,+l ,  with i 
fixed. 

Let the tangent hyperplane of  5' at Xi and X i +  1 be Qi: X [ A X  = 0 and Q~+~: 
X[+IAX = 0, respectively. Let Li be the intersection of  Qi and Qi+l, which is a ( d - 2 ) -  
dimensional affine manifold. Let Ci: Pi(u) be a rational quadratic B6zier curve on 5' 
interpolating Xi and Xi+l. Let Xi, Yi and Xi+l  be the control points of  Pi(u) in B6zier 
form. Since Ci is on 5", Y//is necessarily on Li, i.e., X[AYi  = 0 and X~+IA~ = 0; for 
otherwise the straight line Y~Xi or YiX,+I would not be tangent to 5', contradictory to 
C~ < 5". 
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Let the standard B6zier representation of Pi(u) be 

Pi(u)  = X iBo ,2 (u )  + wYiBI,2(11) q'- Xi+IB2,2(11), I1 E [0, 1]. (2) 

The weight w must satisfy Pi(u)TApi(11) = 0 for all u E [0, 1] since Ci c S. Sub- 
stituting (2) in Pi(11)TA1-?i(u) = 0, noting that X~rAXi = xT+IAXi+I = X f  AYi = 
X~+lAYi = 0, we obtain 

2 X f A X i +  1Bo,2(/z)B2,2(11 ) -[- w2y/TAy/B~,e( ' /z) = 0, 

or, when yiTAYi ~k 0, as B12,2(u) = 4Bo,2(u)B2,2(11), there is 

W 2 -- X T A X { + I  
2 y T A y  ~ . (3) 

When the right hand side of (3) is nonnegative, a real value of w can be solved for 
from (3). Now we shall find the condition on Yi for the right-hand side of (3) to be 
nonnegative. 

Lemma 2.1. Let Xi  and Xi+l be distinct points on the same generating line of the 
quadric S. Then the line segment X~Xi+l is the only conic arc on S interpolating X i  
and Xi+l. 

Proof. Suppose there is another conic C~ passing through Xi and Xi+l,  which is nec- 
essarily nondegenerate. Then the unique plane containing Ci intersects the quadric S in 
the conic Ci plus the line X~X,+I, contradicting that any plane section of a quadric is a 
conic if the plane is not contained in the quadric. [] 

Lemma 2.2. On a regular quadric S a straight line segment and a nondegenerate conic 
arc cannot meet with G I continuity. 

Proof. Suppose a nondegenerate conic arc C and a straight line segment g on S join with 
common tangent T. Let Pc be the plane determined by C. Then Pc contains T, and 
therefore contains g. So the plane P c  intersects the quadric S in a cubic curve consisting 
of the conic containing C plus the straight line containing g. This is a contradiction. [] 

Because of Lemma 2.1 and Lemma 2.2, the case where two consecutive points X~ 
and Xi+l are on the same generating line of S is not of interest to us, and will therefore 
be excluded. 

The following theorem provides a geometric condition on the existence of a local 
interpolating rational quadratic curve and also a way to construct it. 

Theorem 2.3. Let S: XT A X  = 0 c E d be a regular quadric. Let Xi  and Xi+l E S 
be distinct points on the same component but not on the same generating line of S. 
Then, X~, Yi and Xi+l are the control points of a rational quadratic Bdzier curve 
on S interpolating X i  and Xi+l if and only if X [ A Y i  = Xf+IAYi = 0 and 
(X[AXi+I)(y~TAyi)  < O, or geometrically, (i) Yi E L i  and (ii) the point Y~ and the 
line segment XiXi+l  are on the opposite sides of S. 
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Proof.  Let Xi  and Xi+l be in normalized homogeneous form. Then Xi + Xi+i is a 
point on the line segment X~Xi+l. The segment XiX~+I is entirely on the same side of  
S as the point (Xi + Xi+l) ,  since Xi and X~+l are the only intersections of  the straight 
line XiXi+l with S. 

When Xi; Y~ and Xi+,  are the control points of  a B6zier curve Pi(u) of the form (2) 
on S, Y/E  Li, i.e., X~AYi  = X[+IAYi = 0. From the existence of  Pi(u) connecting X~ 
and Xi+l, by (3) we have -X~AXi+l / (2y iTAy i )  = w 2 >>. O. Since Xi and Xi+l are not 
on the same generating line of  S, XTAXi+I ~ O. Therefore (XT AXi+,)(y~T Ay~) < O. 
As (Xz + Xi+I)TA(Xi + Xi+l) = 2XTAXi+I, we have 

[(X~ + Xi+,)TA(Xi + Xi+,)] (y/TAy/) < O. 

Hence Yi and XiXi+I are on the opposite sides of  S. 
Now suppose that (i) XTAy~ = X[+~AY~ = 0 and (ii) (y~TAy~)(XTAX~+~) < O. 

Since Y~ E L i ,  by (i), we can construct a B6zier curve on S of  the form (2), with the 
weight w determined by (3). By (ii), we have 

- X T  AXi+I 
>0.  

2y/TAy~ 

Therefore a proper w can be solved for from (3), i.e., Xi,  Y/ and Xi+l are the control 
points of  a B6zier curve on S interpolating X,i and Xi+l. [] 

It is evident that when Xi and X~+~ are distinct points on the sphere S a-I C E a or 
any surface that is affinely equivalent to S d-' ,  (XViAXi+j)(yiTAyi) < 0 holds for any 
Yi E Li. Therefore we have 

L e m m a  2.4. Let Xi  and Xi+l be two distinct points on a quadric S that is affinely 
equivalent to the sphere S d-1 C E d. Then for any Yi C Li, the three points X,i, ~ and 
Xi+l are the control points of two rational quadratic Bdzier curves interpolating Xi  and 
X~+ 1 on S d- 1, one with the proper weight and the other with the complementary weight. 

For a general regular quadric we have only a weaker result. From Theorem 2.3 it is 
seen that Y/ E Li gives an interpolating Bdzier curve (2) if and only if the right-hand 
side of  (3) is nonnegative. 

L e m m a  2.5. Let Xi  and Xi+l be distinct points on the same component but not on the 
same generating line of a regular quadric S: XT A X  =- 0 C E d, d ~> 3. Then there 
exists a conic arc on S that connects Xi  and X~+I. 

Proof.  See the Appendix. [] 

Lemma 2.5 cannot be made as strong as Lemma 2.4 because on a hyperboloid of  one 
sheet S in E 3 it is easy to give two points Xi and Xi+l E S and a Yi E L~ such that ]~ 
and XiXi+l are on the same side of  S. See Fig. 1. 
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Fig. 1. The points X~ and X~+~ are on the front side of hyperboloid S and the solid part of L~ is 
outside S. The point Y~ E L~ is on the same side of S as the segment X~X~+~. 

Li Li + I// 
Yi 

Fig. 2. The control point Yi+l E L~+l is the projection of Y~ E Li through X~+l. The points 
X~, Xi+l, and X~+2 are on the front side of the sphere and the intersection of Li and L~+~ is in 
front of the sphere. 

2.2. Construction o f  interpolating spline curves 

Given {Xi}in=l, n ~> 3, on S: X T A X  = 0 C lg, d, we now consider constructing a G 1 
rational quadratic spline curve on S interpolating { X i } ~ .  Let X~, Y/ and X/+I  be the 
control points of  the local curve segment C~ in the standard B6zier representation (2). We 
need to determine all the Y~ so that C,~ and C~+l join with G 1 continuity, i = 1 , . . . ,  n -  1. 
To have a well defined problem we assume that any two consecutive points are distinct 
and {X,}i=I are on the same component of  S. As explained earlier, we assume that no 
two consecutive points are on the same generating line of  S. 

Now given { X i } ~ l ,  by Lemma 2.5, we can first choose YI E L1 such that (3) is valid. 
Let us now find Y/+l with Yi being known. Since Y/Xi+1 and Yi+IX~+I are the tangents 
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to Ci and Ci+l at their joint point Xi+l ,  respectively, in order for Ci and Ci+l to have 
common tangent at Xi+l ,  the point Yi+l must be the projection of Y~ E L~ through X~+I 
into L~+I. See Fig. 2 for illustration. So Y/+l depends projectively on Yi. The following 
lemma gives the expression of this dependence. 

L e m m a  2.6. Let Mi  = I]~=l R j ,  with R1 = I, the identity matrix, and 

R j  = x j x T + I A -  ( X T A X j + , ) I ,  j = 2 , . . . , n -  1. 

I f  the interpolating quadratic spline curve exists, then Yi = MiY l ,  i = 1 , . . . ,  n - 1. 

Proof .  Because Y~, Xi+l  and Yi+l are collinear, we have 

Y/+l = aXi+l  q- bYi 

for some constants a and b. Premultiplying xT+2 A to both sides, since xT+2AY/+, = 0, 
we obtain 

0 = a(XTi+2AXi+l) + b(XT+2AYi). 

So omitting a nonzero multiplicative constant, we have 

~ + 1  = (X{+:AY~)X~+, - (X[+2AX~+I)Y~ 
(4) 

= [Xi+IX[+2 A -- (xT+IAXi+2)I]Y~.  

Let Rj  = X j X ] + , A  - ( X ] A X y + I ) I ,  j = 2 , . . .  , n  - 1. Then the lemma follows. [] 

The next theorem gives a necessary condition on the existence of a rational quadratic 
spline curve interpolating {Xi}i~l .  

X n T h e o r e m  2.7. Let a sequence o f  points { ~}i=z be given on the same component o f  
a regular quadric S: X T A X  = 0 C E d, d >~ 3. Assume that no two consecutive 
points X i  and Xi+l  are on the same generating line o f  S. A necessary condition fo r  
the existence o f  a G ~ rational quadratic spline curve on S interpolating {Xi}in=l is that 
( X ~ A X 2 ) ( X T A X ~ + I )  > O, i = 1 , . . .  , n  - 1, i.e., all the line segments X i X i +  1 are on 
the same side o f  S. 

The next lemma is needed in the proof  of  the above theorem. 

L e m m a  2.8. Let {X~}i~I be given as in Theorem 2.7. Let Yl E L I  and Yi = MiY1, 
i = 2 , . . . , n  - 1, as defined in Lemma 2.6. I f y1TAyI  ¢ O, then (Y(rAYt)(YiTAY~) > 
0, i = 1 , 2 , . . . ,  n - l, i.e., all the Y~ are on the same side o f  S. 

Proof .  As obtained in the proof  of  Lemma 2.6, 

Y,+, = (xT+2AYi)Xi+,  - (xT+1AXi+2)Yi ,  i = 1 , . . . , n  - 2. 

Since xT+IAXi+1 = xT+IAYi  = 0, it follows from the above expression that 

YiT+j AYe+, = (xT+, AXi+2 )2 (yiTAy/).  
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Since Xi+l and Xi+2 are not on the same generating line of  S, (xT+IAXi+2) 2 > O. 
Hence the lemma follows. [] 

Proof  of  Theorem 2.7. By Lemma 2,8, all the points Yi are on the same side of  S. 
By Theorem 2.3, for any i, the line segment X~Xi+j and the point Yi are on the op- 
posite sides of  S. Hence all the line segments X~X~+~ are on the same side of  S, i.e., 
(XTAX2)(XTAX~+I) > O, i = 1 , . . . , n -  1. [] 

The condition given in Theorem 2.7 is in general not sufficient. However, on a sphere 
we have 

Theorem 2.9. Given a point sequence {Xi}~ i on S C E a which is affinely equivalent 
to the ,sphere 5; d-l, for an)' point YI ~ Ll, there exists a G 1 rational quadratic spline 

X n curve on S interpolating { i}~=1, with the initial control point being YI. 

Proof.  Let YI E L1 and Yi = M,y j ,  i = 2 , . . . , n -  1, be given as in Lemma 2.6. 
By Theorem 2.3 and Lemma 2.4, for any Y1 E LI we have - ( X T A X z ) / ( Z y T A Y 1 )  > 
0 since XTAX2 ~ O. By Lemma 2.8, (yTAyI)(y iTAyi)  > 0, i = 1 , 2 , . . . , n  - 1. 
Since S is affinely equivalent to a sphere and X~ ¢ X~+l, it is easy to verify that 
(XTAXz) (XTAXi+I)  > 0, i.e., all the line segments XiXi+l are on the same side of  S. 
Therefore - (XTAXi+I ) / ( z y~TA~)  > 0, i = 1 , 2 , . . .  , n -  1. Hence two real weights 
can be obtained from (3) for each i, and both of these weights yield a continuous and 
smooth BEzier curve segment since the underlying conic is an ellipse. So the required 
interpolating spline curve is given by applying Lemma 1.2 to choose the appropriate 
weights successively to ensure G 1 continuity between all adjacent conic arcs. [] 

The condition in Theorem 2.7 imposes a substantial restriction on a general quadric. 
For example, on a hyperboloid of one sheet S in E 3, it is easy to come up with a point 

X ~ sequence { ~}i=l such that not all the line segments X~X~+I are on the same side of  S. 
See Fig. 3. Hence by Theorem 2.7 it is impossible in this case to construct a G ~ rational 
quadratic spline curve on S to interpolate {Xi}~? i. 

Fig. 3. Not all the line segments connecting consecutive data points are oil the same side of 
hyperboloid S. 
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(a) (b) 

(¢) (d) 

Fig. 4. Four spline curves interpolating the same set of data points are given by different Y~ E L~. 

Fig. 4 illustrates the application of  the above method to interpolating six data points 
on a sphere in E 3 by choosing different points YI E LI. Still we do not know how to 
choose the best Yl or if there is always an acceptable choice of  Yj for all possible data. 
This is mainly because YI has global influence over the whole curve. Later on we will 
see that biarc interpolants provide a better solution with local control. 

2.3. Closed interpolating spline curves 

Given points ~f X "~n+2 t zJ i= l ,  n /> 3, on S: X T A X  ~- 0 with X,~+l = Xl and X,~+2 = X2, 
we now consider constructing a G l rational quadratic spline curve on S interpolating 
{ y  ln+2 Clearly, such a spline curve induces a closed G 1 curve interpolating {Xi}i~=l, 

~ Z J i ~ I  • 

by just removing its last curve segment. In order for this problem to have a solution, it 
is necessary that there exist Y~ E L j  such that Mn+lYl  = pYJ for some p ¢ 0, where 
Mn+l is defined in Lemma 2.6. 
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From its definition in Lemma 2.6, Mi = I-I~:l t~j,  where Rj induces a projection 
from Lj_j  to Lj. Therefore M~, when restricted to L1, is a projective transformation 
from L1 to Li; in particular, Mn+l induces a projective transformation on Ll. Thus the 
following is evident. 

Lemma 2.10. There exists a closed rational quadratic spline curve interpolating 
X { i}i=l tf and only if there exists a G l rational quadratic spline curve interpolat- 

ing f Y.~t~+2 Xn+l = Xl and X,~+2 = X2, with the initial control point YI E L1 such 
that YI is a real fixed point of M~+l. 

The condition on the existence of a real fixed point of Mn+l in Ll is still unknown 
in general. Now let us consider the cases of d = 3 and d = 4. When d = 3, LI is a 
straight line in E 3, and Mn+l induces a homography H(LI)  on L1. A homography on 
a straight line is a rational linear transformation on it. A united point of a homography 
is one of its fixed points on the straight line. By the theory of homography on a straight 
line (Semple and Kneebone, 1952), H ( L I )  has either two distinct real united points, or 
a double real united point, or a pair of conjugate complex united points. So M,~+l does 
not always have real fixed points on L1. 

When d = 4, L1 is a 2-dimensional plane in E 4. 

Lemma 2.11. When d = 4, AI,~+I always has a real fixed point on the plane L1. 

Proof. First establish a projective frame of reference F in Ll. Then the transformation 
induced by M~+l on LI can be represented by a nonsingular 3 × 3 real matrix M 
with reference to F.  Such a matrix has a nonzero real eigenvalue and an associated real 
eigenvector, and this eigenvector gives a real fixed point Yl E L l  of Mn+l. [] 

Thus, in particular, for the closed interpolation problem on S 3 c ]~4 we have 

X n Theorem 2.12. Let { i } i = 1  be a point sequence on the sphere S 3 C E 4. There exists a 
X '~ S 3. G l closed rational quadratic spline curve interpolating { ~}i=l on 

Proof. By Lemma 2.11, Yl E Ll can be chosen to be a real fixed point of Mn+l. By 
- - ~ n + 2  Theorem 2.9 there is a G l rational quadratic spline curve interpolating {AQi=I with 

the initial point being Yl, where Xn+l = Xi ,  X,~+2 = X2. So by Lemma 2.10 there is 
a closed rational quadratic spline curve interpolating {X,}i~l.  

3. Biarc interpolation on a quadric 

In this section we consider the following biarc interpolation problem on a quadric S. 
Let X0 and Xl be two distinct points in normalized homogeneous form on S: X T A X  = 
0 C E a, d ~> 3. Assume that X0 and Xl are on the same component but not on the same 
generating line of S. Let To and T~ be the tangent directions, represented as points at 
infinity, to be interpolated at X0 and Xl, respectively. The problem is to find a biarc on 
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Fig. 5. A spherical biarc with control points. 

S interpolating the data D = {Xo, X1, To, TI }. Naturally we assume that To and T1 are 
also tangent to S. Thus X~ATo = 0 and X~ATI  = O. 

A biarc on S is a curve consisting of two rational quadratic B6zier curves (or conic 
arcs) joined with G 1 continuity. We mainly consider a special kind of biarcs consisting 
of rational quadratic Bdzier curves with proper weights, which will be called the biarcs 
with proper weights. This is because the complementary arc of a conic arc with proper 
weight is not continuous, unless the underlying conic is elliptic. 

3.1. Biarcs with proper weights 

Let Co and Cl be the two conic arcs of a biarc with proper weights on S with 
standard B6zier representations Po(u) and P1 (v), respectively. Let the control points of 
Po(u) and Pl(V) be X0, Y0, Z and Z, Y1, X1, where Z is the joint of the two arcs (see 
Fig. 5). Denote the three tangent hyperplanes of S at X0, X1 and Z by, respectively, 
Qo: X T A X  = 0, QI: X ( A X  = 0 and Q: Z T A X  = 0. Then Y0 must be on the 
(d - 2)-dimensional affine manifold L0 -- Qo N Q defined by XToAX = Z T A X  =- O. 
Similarly YI E Ll ~ Q N Q1, where L1 is defined by Z T A X  = X ~ A X  = 0. The points 
Yo, Z and YI are assumed to be collinear, in order for Co and CI to join smoothly at Z. 
Let 

Y o = X o + k o T o  and Y1 = X l - k l T l ,  (5) 

where k0, kl > 0. The assumption that ko, kl > 0 follows from that only biarcs with 
proper weights are considered. Consequently, by Lemma 1.2, the joint Z is between Y0 
and YI. Now we assume that (Y0) ~ (YJ), so the straight line YoY1 is uniquely defined; 
the case of (Y0) = (YI) will be discussed later on. 

Since X T A X o  = X~ATo = X?AX1  = X~ATl  = 0, from (5) we have 

YoT AYo = k2TT ATo and YIT AY1 = k~TT ATj.  (6) 

Because a solution to the above biarc interpolation problem can be regarded as a solution 
to the point interpolation problem discussed in the last section for the data points X0, Z 
and XI, we obtain the following necessary condition. 

Lemma 3.1. A necessary condition for the biarc interpolation problem to be solvable is 

(T~ATo)(T~AT1) > O. 
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Proof. When the problem is solvable, by Lemma 2.8, (YoTAYo)(Y~TAY~) > 0. By (6), 
since 2 2 (T~ATo) (T(ATI )  > O. [] kok , > 0, we obtain 

Because of Lemma 3.1, without loss of generality, we can normalize To and T,, 
replacing A by - A  if necessary, so that T~ATo = T~AT1 = 1. So we will assume that 
To and T, are given satisfying T~ATo = T~AT1 = 1. Then (6) can be written as 

YoTAYo = k 2 and YIXAYI = k~. (7) 

By the preceding observation regarding the relation between Yo, Z and )I1, the straight 
line YoY1 is well defined and Z is the tangent point of the line YoY, to S. Thus the 
Joachimsthal's equation [19] obtained by substituting the parametric representation AYo + 
#Y1 of YoY1 in XT A X  = O, 

AZ(Y~ AYo) + 2A(Y~ AY1) + #2(y~ AY,  ) = O, 

has a double root. Therefore its discriminant 

A ~ 4[(YoTAy1) 2 - (YoTAYo)(yITATt~)] = O, 

or, by (7), 

(yoT AyI )  2 - k2k~ = O. 

Then it follows that 

yT  Ay~ - kok, = 0 (8) 

or  

YoT Ay~ + kok, = 0. (9) 

When A = O, A/tt  = - (y tTAy, ) / (YoTAYo) .  Thus, omitting a nonzero multiplicative 
factor, the straight line AY0 + ttY~ touches S at 

Z = (YoTAy,)Yo - (yTAYo)Y1. 

By (8) or (9) we obtain, respectively, 

Z = kok,Yo - k2y, (10) 

or  

z = - k o k l Y o  - k2Y,.  ( l  l )  

Since Yo and Y1 are in normalized homogeneous form and Z is required to lie between 
Yo and Y1, we discard (10) and retain (11) as the desired expression for Z, because when 
k0, ki > 0, (10) gives a point Z outside the line segment YoY1; however, when k0 > 0 
and kl > 0, i.e., when proper weights are used, by Lemma 1.2, Z must be a point on 
YoY1. Dividing by - k o  in (11)yields 

Z(ko, k~) = klYo + koY~ = k~(Xo + koTo) + ko(X~ - k,Tl) 
= ~ l [ X o  ~- ~o(To - TI ) ]  -]- koXl .  (12 )  
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Y0 
\ t. 

Fig. 6. An instance of singular data on S 2 is shown with one of its degenerate biarc interpolants 
and the control polygons. The joint point Z is marked with e, which coincides with A%. The ends 
of tangents To and T~ are marked with o. 

Substituting (5) in (9), ko and kl are found to be related by 

X T A X ,  + koXVATo - k lX f f  AT~ + kok,(1 - TToAT,) = 0. (13) 

In the above derivation it is assumed that (Yo) ¢ (Yi); for otherwise the straight line 
YoYJ is not uniquely defined. It will be shown that (Yo) = (Yl) occurs for some ko and 
kl satisfying (13) only when D is the data of  a special kind. 

Definition 3.2. The data D = {Xo, X1, To, Ti } is singular if Xo + pTo = X1 + pTi for 
some finite p # 0 or To = 7'1. 

Let [X, T)  denote a half line starting at X and pointing in the direction T. Then 
geometrically, for singular data with To 7 ~ T1, the half lines IX0, To) and [XI, Tj ) intersect 
each other or the half lines [Xo, - T o )  and IX1, - T 1 )  intersect each other. Note that if D 
is singular then X0, To, Xj ,  and T1, being treated as points in the projective space, are 
coplanar. An example of  singular data is illustrated in Fig. 6. 

L e m m a  3.3. Given data D = {X0, XI ,  To, Tl}  on a regular quadric S, there is (Yo) = 
(Yl) .for some ko and hi satisfying (13) i f  and only i f  D is singular. 

Proof .  First consider necessity. There are two cases to consider: (i) (Yo) = (Y1) is a 
finite point; (ii) {1~) = (Y~) is a point at infinity. 

(i) In this case ko and kl are finite and (Y0) -- (Yl) implies that Yo = Yl. Since Xo 
and XI are distinct points, ko ~ 0 or kl ¢ 0; for otherwise from Yo = YI and (5), 
Xo = Xt  would result, a contradiction. First assume ko ~ 0. By (7), YoTAYo = k 2. On 
the other hand, since Yo = Y1, and ko and kl satisfy (9), which is equivalent to (13), 
YoXAYo = YoTAyI = - k o k l .  Therefore ko 2 = - k o k l ,  or ko -- - k l  since ko ~ 0. From 
Yo = YJ, we obtain 

Xo + koTo = X1 - kiT1 = X~ + koTj. 

So, by definition, D is singular. When kl ¢; 0, the same conclusion follows from a 
similar argument. 
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(ii) In this case ko and kl are infinite. From (Yo) = (Y1), we have either To = T1 or 
To -- -T1 .  Eq. (13) can be rewritten as 

X~AX1 X'~ATo X~AT1 + 1 - TT ATI = O, 
kolg----7 ~- ]~1 ] ~  

which is reduced to 1 - T~ATI --- 0 when ko = oc and kl = oo. Since 1 - T~AT1 = 0 
is satisfied by To = TI but not To = -T1 ,  we have To = Tl. Hence D is singular. 

Now we prove sufficiency. Suppose that D is singular. When Xo + pTo = Xl + pT1 
for some finite p ~ 0, it can be verified directly that k0 = p and kl ----- - p  satisfy (13), 
and Y0 = YI for this pair of  k0 and kl. When To = TI, as above it can be shown 
again that ko = cxz and kl = e~ satisfy (13). For this pair of  k0 and ki, we have 
<Vo> = <Yl> = (To> = ( f l > .  [] 

Theorem 3.4. Let D = {Xo, X1,To,  TI} be nonsingular data on a regular quadric 
S: X T A X  = 0 C E d with T~ATo = T~AT1 = 1. There exists a biarc with proper 
weights interpolating D if and only if there are solutions ko and kl of Eq. (13) that 
satisfy ko > O, kl > 0 and 

X~AX1 - kIX~AT, < O, X~AXo + koXfATo < O. 

The last two conditions are equivalent to (Y~AYo)(X~AZ) < 0 and (Y1TAy1) 
(X AZ) < o. 

Proof.  For the necessity suppose there is a biarc with proper weights interpolating D. 
Since the two arcs of  the biarc both have proper weights, in order for To and T1 to be 
interpolated, we must have k0 > 0 and kl > 0. By Theorem 2.3, the existence of  this biarc 
implies that (Y~AYo)(X~AZ) < 0 and (YITAY1)(X~AZ) < 0. Since Z = kiY0 + koYl, 
we have 

X~ A Z  = koX~ AY~ = ko( X~ AXi  - k, X~ AT1). 

Since k0 > 0 and (Y~AYo) = k~, from (YoTAYo)(X~AZ) < 0 it follows that X~AX~ - 
kIX~AT1 < 0. Similarly we can show X~AXo + koX~ATo < O. 

To prove sufficiency, we observe that, when the conditions are satisfied, the joint 
Z = klYo+koY1 is on the line segment ]/o]1"1, where Y0 = Xo+koTo and YI = XI -kiT1. 
In addition, X~AX,  - klX~AT1 < 0 and X~AXo + koX~ATo < 0 ensure that proper 
weights for the two arcs of  the biarc with joint Z can be solved for from (3). So, by 
Lemma 1.2, a biarc with proper weights can be constructed to interpolate D. [] 

For a general regular quadric S, we still do not have a geometric characterization as 
when the conditions in Theorem 3.4 are always satisfied. However, we will see that these 
conditions are always satisfied for generic data on a sphere. 

3.2. Biarcs for nonsingular data 

Definition 3.5. A biarc is degenerate if one of  its arcs degenerates into a single point. 
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A biarc with control points X0, Y0, Z and Z, Yl, X1 for the two arcs is degenerate 
if and only if Z coincides with X0 or X1. The necessity is obvious. For the sufficiency 
suppose that (Z) = (X1) (the other case is similar). Then the control polygon ZY1XI 
collapses into two coincidental line segments. First assume k I ~ O. Then ZTAX1 = 0 
since (Z) = ( S  1), and yITAyI = k 2 ~ 0. So w = 0 by (3), i.e., the arc controlled 
by AZY1X~ is a point. When kl = 0, by (5), (Z) = (Y1) = (XI) ,  and again the arc 
becomes a point. 

T h e o r e m  3.6. Let D -- {Xo, X1, To, T1 } be data on a regular quadric S. Let ko and kl, 
kokl ~ O, be a solution of (13)  such that (Yo) ~ (Y1). Then the biarc interpolating D 
given by ko and kl is nondegenerate if and only if D is nonsingular. 

The proof  of  Theorem 3.6 is given by the following Lemma 3.7 and Lemma 3.8. The 
case where (Yo) = (111) is excluded in Theorem 3.6 for the reason that in this case the 
argument leading to (13) is invalid. By Lemma 3.3 this case occurs only for singular 
data, and we will discuss it later on. 

L e m m a  3.7. Let D = {X0, X1, To, Tl} be singular data on a regular quadric S. Then 
Eq. (13)factors. And for any solution ko and kl of(13)  such that (Yo) ~ (Y1), the biarc 
interpolating D is degenerate. 

Proof .  Let D = {Xo, Xl ,  To, T~ } be singular. There are two cases to consider: (i) Xo + 
pTo = XI  + pT~ for some finite p ¢ 0; and (ii) To = TI. 

(i) In this case To ¢ T1. The left hand side of  (13) becomes 

XT A(Xo + pTo - pT1) + ko(Xo + pTo - pTI)T ATo - k , (XT  AT1) + 

+ kokl (1 - TTAT1) 

= - p ( X T A T 1 )  + kop(1 - TTATI) - k l (XTAT1) + kok,(1 - TTAT1) 

= (k, + p) [ko(1 - TTAT1) - (XTATI)] 

= (k, + p)[ko(1 - TTAT1) - ( X  T + pT, - pTo)TAT,] 

= (k, + p)[ko(1 - TTAT,)  - p(1 - TTAT1)] 

= (1 - TTAT,)(ko - p)(kl + p ) .  

Since Xo and X1 are not on the same generating line, 

1 - TTATI 1 = ~ (T1 - To)TA(T1 - To) = (Xo - X ,  )TA(Xo -- X,  ) 

- X T A X '  ~ O. 
p2 

So from (13) we have ko -- p or kl = - p .  First we take (ko, kl)  = (p, kl),  kl ~ - p ,  as 
solutions of  (13); here kl ~ - p  since ko -- p and kt = - p  would cause Yo = Yl, a case 
that has been excluded. Therefore by (12), 

z = k~(Xo + koTo) + ko(X~ - k~T~) = k i (Xo + pTo - pT~) + pX~ 

= (k~ + p )Xl .  
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Thus (Z) = (X1) since kl + p ¢ 0. Hence the resulting biarc is degenerate. When 
( k o , - p ) ,  with ko ¢ p, are taken as solutions of (13), it can be shown similarly that 
( z )  = (Xo)  

(ii) Eq. (13) can be rewritten as 

M A X 1  XTATo XVoAT, 
k o k ~  + k ~  k ~  + 1 -  T :  AT, = O. 

Since in this case To = T,, 1 - T~ AT1 = 1 - T~ ATo = O, M A T ,  = X~ ATo = O, 
and X~ATo = XTAT1 = 0. The above equation is reduced to X~AX1/ (kok , )  = O. 
This equation is satisfied by ko = + o c  o r  1~1 : -}-OO. First take a finite ko and k, = c~ 
as solutions of  (13); here ko is finite because when ko = + o c  and kl = -+-oc, we have 
(Yo) = (Y1) = (To}, a case that has been excluded. Then 

(Z) = (kl(Xo + koTo) + ko(X, - k ,T,)}  = (k , (Xo + koTo - koT~) + koX, 

: (k,Xo + koX,)  = ()Co} 

Hence the resulting biarc is degenerate. The case where ko : -+-cxD and kl is finite can 
be proved similarly. [] 

Lemma 3.8. Let D = {Xo, XI ,To ,TI}  be nonsingular data on a regular quadric S. 
Then the interpolating biarc given by any solution ko and kl of Eq. (13), kokt ¢ O, is 
nondegenerate. 

Proof .  Suppose there is a degenerate biarc interpolating D, with kokl ~: 0. Without loss 
of  generality, assume that Z = /3Xo  for some/3  ¢ 0. Then by (12), 

/3Xo = k l (Xo  + koTo) + ko(Xj - k ,T , ) .  

Since Xo and Xl are in normalized homogeneous form and the last components of To 
and T1 are zero,/3 = ko + kl. Thus 

koXo - koklTo = koXl - koklT1, 

or, since ko -¢ 0, 

Xo - klTo = X1 - klTI. 

Since k~ ¢ O, by definition, D is singular, a contradiction. Note that the above equation 
reduces to To = 7'i if kl : oc, again implying that D is singular data. [] 

3.3, Biarcs for singular data 

About the existence of nondegenerate biarcs interpolating singular data, we have 

Lemma 3.9. Let B be a nondegenerate biarc interpolating singular data D = {Xo, 
X1,To, TI} on a regular quadric. Let XoYoZ and ZY1XI be the control polygons of 
the two arcs of B, respectively. Then Yo = Yl and only one of the arcs has proper 
weight. 
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(a) (b) 

Fig. 7. Two biarcs interpolating singular data with To = T1. 

Proof. Y0 = YI is implied by Lemma 3.7. As the joint Z is the tangent point of the line 
YoZ to the quadric S, Z is outside the degenerate line segment YoY1 (since Y0 = Y1). 
So by Lemma 1.2, only one of the two arcs has proper weight. [] 

When (Y0) = (YI) for singular data D = {Xo, XI,To, TI}, the locus of Z is the 
intersection of S with the polar hyperplane YoTAX = 0 of Y0 with respect to S, since Z 
is the tangent point to S of a straight line passing through Y0. Let ZD denote the locus 
of Z. For each point Z C ZD but Z # X0 and X1, two rational B6zier curves on S with 
control polygons XoYoZ and ZY1XI, respectively, can be constructed to join with G 1 
continuity at Z. These two B6zier curves yield a nondegenerate biarc interpolating D if 
they are both continuous. Fig. 7 shows two biarcs on S 2 interpolating singular data with 
To=T1. 

The degree of freedom of biarcs interpolating singular data, if they exist, is d - 2, 
which is the dimension of ZD. However, the degree of freedom of biarcs interpolating 
nonsingular data, if they exist, is only one. Therefore, when d > 3, it is possible that 
there exist more interpolating biarcs for singular data than for nonsingular data. This is 
exactly the case on the sphere S d-1 C Ed~ d > 3. 

3.4. Biarcs on a sphere 

Theorem 3.10. There exists a nondegenerate biarc with proper weights interpolating 
data D = {Xo, X1,To, TI} on S d-1 C E d if and only if D is nonsingular. 

Proof. The necessity is implied by Lemma 3.9. We now prove the sufficiency. By 
Lemma 3.8, since D is nonsingular, every biarc interpolating D with kokl # 0 is non- 
degenerate. It suffices to show that the conditions of Theorem 3.4 are always met on 
s d - I .  

Let the equation of S d- 1 be X T A X  = 0, with 

0 - 1  



Q 
/ 

W. Wang, B, Joe / Computer Aided Geometric Design 14 (1997) 207-230 

where Ia is the d × d identity matrix. Then (YoTAYo)(XTAZ) < 0 and (yITAyI) 
(XTAZ)  < 0 always hold on S d-~. Also, as T~ATo = TTTo > 0 and TTAT~ = 
TTT~ > 0, the assumption that TTATo = TTAT1 = 1 is justified. By Theorem 3.4, we 
just need to show that Eq. (13) has solutions k0 and kl with /co, kl > 0. Since Xo and 
X1 are in normalized homogeneous form and X0 ~ XI ,  we have 

--2XTAX, = (Xo - x , )TA(Xo - X , )  = (X0 - x , ) T ( x 0  -- X , )  > 0. 

So XTAX1 < 0, i.e., the constant term Eq. (13) is negative. Since D is nonsingular, by 
definition, To ~ Tl. Therefore 

I _ T T T ,  = 1 [ (To  - T1)T(T0 - T1) > 0. (14) 

That is, the coefficient of  kokl in (13) is positive. Hence (13) has positive solutions k0 
and kl because ko = kl = 0 makes the left hand side of (13) negative and sufficiently 
large positive values of ko and kl make it positive. [] 

Given nonsingular data D on S d-l, setting k0 = kl in (13), we have the equation 

ale 2 + bk + c = 0, (15) 

2 2 4  

(b) 

o 
\ / 

(c) (d) 

Fig. 8. Four different data configurations on sphere and their biarc interpolants. The joints are 
marked with .. The parameters k0 and k~ used are the positive root of Eq. (15). 
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where a = 1 - TffATI, b = XTATo - XTATI and c = XToAXI. By the argument in the 
proof of Theorem 3.10, this equation has positive solution k = [-b + (b 2 - 4ac) 1/2]/(2a) 
for nonsingular D on S a-1. A particular positive solution of (13) is ko = kt = k. Fig. 8 
shows the biarc interpolants on S 2 for several different data configurations, using the 
positive root of (15) as k0 and kl. 

3.5. The locus of joint 

When (13) does not factor into two linear factors, kl can be expressed in terms of k0; 
then Z(k0, kl) given by (12) is parametric curve of ko. 

Lemma 3.11. For D = {Xo, X1,To, TI} on a regular quadric S, Eq. (13) does not 
factor if and only if D is nonsingular. 

Proof. The necessity is given in the proof of Lemma 3.7. We will only outline the proof 
for the sufficiency part. Since a bilinear function axy + bz + cy + d, with a ~ 0, factors 
if and only if the discriminant ad - bc = 0, we just need to show that the discriminant 
of the left hand side of (13) does not vanish. Let h be the discriminant of (13), i.e., 

h = (XTAX1)(1 -- TVoATI) + (XTATt)(XTATo).  

Let M = [XoToXIT1]TA[XoToX1TI]. Then it can be verified that 

det(M) = h [ - (XTAX,) (1  + TTATI) + (X~AT1)(X~ATo)]. 

When D is nonsingular, X0, To, X1 and TI, being treated as four points in projective 
space, are either noncoplanar or coplanar. When they are noncoplanar, det(M) ~ 0 (and 
hence h ~ 0), for otherwise, the 3-dimensional affine manifold spanned by the four 
points would be contained in the quadric S, contradicting that S is regular. When the 
four points are coplanar, noting that the last components of To and T1 are zero, and X0 
and XI are in normalized form, we have Xo + poTo = XI + plTl for some P0 and pl. 
Then 

(Xo + poTo)TA(Xo + poTo) = (X, + p, TI)TA(X, + p, Tl), 

or, after simplification, p2 = p2. It follows that Po = -P l ,  since D is nonsingular. Letting 
p = P0 = - p l ,  we have Xo + poTo = Xl  - pT1; obviously p ~ 0 since X0 ~ XI. Using 
this equality it can be verified directly that h = 2XTAX1 ~ O. Thus h ~ 0 for any 
nonsingular data D. Hence Eq. (13) does not factor. [] 

Theorem 3.12. For nonsingular data D = {X0, XI, To, T1 } on a regular quadric S, the 
locus of Z given by (12) is a conic on S passing through Xo and Xl.  

Proof. Since D is nonsingular, by Lemma 3.11, (13) is irreducible, so kl can be expressed 
in terms of k0, 

XTAXI  + koXTATo 

kl = X~AT1 + ko(T[AT1 - 1)" 
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Substituting it in (12) and multiplying the denominator, we have 

Z(ko) = [XT AXI + koXT ATo] [X0 + ko(To - T,)] 

+ ko[XTAT1 + ko(T~ATI - l ) ]X, .  (16) 

So the locus of Z is a rational quadratic curve on S. Since Z = (XTAXI)Xo when k0 = 
0, the locus passes through Xo. By a similar argument, it also passes through Xl. [] 

The biarc interpolant has conic precision in the sense that when data D = 
{X0, XI,  To, T1} is extracted from a conic arc C on a quadric S, any point on C is 
the joint of a biarc that reproduces C. Since, by Theorem 3.12, the locus of the joint Z 
is a conic, this locus must be the underlying conic of the arc C. 

3.6. Interpolating a sequence of points 

In Section 2 we see that when there exists a rational quadratic spline curve interpolating 
a point sequence {Xi}i~=l on a quadric, it is determined by a global parameter Yj E Ll, 
which has (d - 2) degrees of freedom. This property is quite undesirable because any 
local perturbation of the data or change of YI has global influence on the curve. Now 
we consider using the biarc interpolant to obtain a locally controllable conic spline curve 

X ~ interpolating { i}i=l- 

Algorithm 3.1. Given {Xi}in_l on the same component of a regular quadric S C 
E a, d ~> 3. Assume that no two consecutive points X~ and X~+~ are on the same 
generating line of S, i = 1 , 2 , . . . ,  n - 1. 

(1) Determine a tangent vector T~ at X~ as the unit tangent vector to the conic C~ on 
S interpolating the three points Xi-1, Xi and Xi+l, i = 1 , 2 , . . . ,  n. The direction 
of Ti conforms with the direction along which a point moves on the conic C~ from 
X~-l through Xi to Xi+l.  X0 = X3 and X~+l = Xn-2  are assumed to provide 
the end tangent directions TI and Tn. 

(2) Use a biarc with proper weights to interpolate D~ -- {Xi, Xi+l,  T~, Ti+l }, i = 
1 , . . . , n -  1. [] 

Fig. 9 shows an interpolating spline curve given by Algorithm 3.1 for the same data 
points as in Fig. 4. 

A property of the above algorithm is that a conic section is locally reproduced; that is, 
if X i - l ,  X~, Xi+l and Xi+2 are on any conic C on S, C is reproduced by the algorithm 
between Xi and X~+I, i = 1 , . . . ,  n - 1 .  

The above algorithm works correctly for any point sequence on a quadric S which is 
affinely equivalent to S d- 1. When S is a general quadric, there exists a biarc with proper 
weights interpolating Xi and Xi+l if the conditions of Theorem 3.4 are satisfied. 

In the second step of Algorithm 3.1, if there exist biarcs interpolating Dr, we have 
to choose one of them according to some criterion. A satisfactory choice entails a study 
of the influence of the parameters k0 and kl on the shape of the resulting biarc. On a 
general quadric this problem is still under investigation. 
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Fig. 9. The same data points in Fig. 4 is interpolated using the biarcs given by Algorithm 3.1. 

227 

4. Concluding remarks 

Two interpolation problems on a quadric are studied. In the first problem we consider 
using a rational quadratic spline curve to interpolate a point sequence on a regular 
quadric S C E a,• d /> 3. Given a point sequence {X~:}i~l , n /> 3, on the same real 
component  of  S : X T A X  = 0, it is shown that a necessary condition on the existence of a 

X '~ ( X T A X 2 ) ( X T A X i + l )  > O, rational quadratic spline curve on S interpolating { i}i=~ is 
i = 1 , 2 , . . . ,  n - 1, or geometrically, all the line segments X i X ~ + j ,  i = 1, 2 , . . . ,  n - 1, 

are on the same side of  S. This condition is sufficient and is always satisfied when S is 
affinely equivalent to a sphere. 

For the second problem, we use a biarc to interpolate distinct points 3/0, XI  and 
tangents To, T1 specified at X0 and Xl ,  respectively. It is shown that for generic data 
the biarc interpolant has one degree of freedom. A necessary and sufficient condition on 
the existence of the biarc with proper weights is given. This condition is satisfied by 
generic data on the sphere S d-I  C E d, d >~ 3. 

Several open problems still remain. We have shown that not every point sequence on 
a general quadric admits interpolation by the rational quadratic spline curve. If  this kind 
of  data occurs, other methods have to be used for interpolation. 

For the biarc interpolation problem we have given a sufficient and necessary algebraic 
condition on th existence of  a biarc interpolant with proper weights (Theorem 3.4). Yet we 
do not know how restrictive this condition is on a general quadric in terms of geometric 
characterization. 

Appendix 

To prove Lemma 2.5, we need the following lemma. 

Lemma A.1. Let  A be a real n × n nonsingular  symmetr ic  matrix. Let  A have p posit ive 

and r negative eigenvalues, p + r = n. Let  t3 be an n x (n  - 1) matrix  o f  rank n - 1. 

Then the symmetr ic  matrix  B T  A B  has at least p - 1 posit ive and at least r - 1 negative 
eigenvalues. 
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Proofi  Since the rank of  B is n -  1, we can add a new column b to it such that D = [B, b] 
is nonsingular. Then BTAB is the leading ( n -  1) × ( n -  1) principal submatrix of DTAD. 
By the Sylvester law of  inertia (Golub and Van Loan, 1989, pp. 416-417), the number of  
positive eigenvalues and the number of  negative eigenvalues of  DTAD are the same as 
those of  A. Since the eigenvalues of  BTAB separate those of  DTAD (Wilkinson, 1965, 
pp. 103-104), we conclude that BTAB has at least p - 1 positive eigenvalues and at 
least r - 1 negative eigenvalues. [] 

P roof  of  L e m m a  2.5. To simplify notation, in this proof we shall use X0 and X1 to 
replace Xi and Xi+l .  First we need an affine classification of  real quadrics in E a (Xu, 
1965, pp. 471-474). It is straightforward to show that any real regular quadric in E a is 
affinely equivalent to one of the following forms: 

(1) X T A X  = 0, where A = diag[1,cr2,. . .  , r i d , - 1 ] ,  ai = +1,  i = 2 , . . .  ,d; or 
(2) X T A X  = 0, where 

[ [0 lol I 1 A = d i a g  ~ l , - - . , ~ r d - i ,  --1 ' ' 

Let .4 have p positive and r negative eigenvalues. Since A is indefinite for X T A X  = 0 
to be a real surface, p ~> 1 and r / >  i. 

We just have to show that the lemma holds for surfaces in these two canonical forms. 
First consider the class of  quadrics X T A X  = 0 with p = 1 or r = 1. These quadrics 
must be in one of  the following three cases: 

(1) X T A X  = 0 with A = diag[Id,--1];  
(2) X T A X  = 0 with A = diag[1,--Id], which gives the same quadfic as by A = 

d iag[ -  1, Id]; 
(3) X T A X  = 0 with 

[ [01 ] 
A = d i a g  I d - l ,  --1 0 " 

For these three cases, p = d and r = 1. Define a point X0 to be inside S: X T A X  = 0 if 
XgAXo < 0. Let S be any one of  the above three surfaces. Then, given any two distinct 
real points )Co = [xo, t , . . . ,  xO,d, 1] T, Xl = [Xl,1, . . . ,  xl,a, 1] x on the same component of 
S, it will be shown that the line segment XoXl is inside S. 

(1) The case A = d iag [ Ia , -1 ] :  

(Xo + x,)T A(Xo + X,)  = 2X'~AX, = - (Xo  - xI)T A(Xo - Xl) < O. 

(2) The case A = diag[--1,Id]:  Since Xl = 0 is the separating hyperplane of  S, S 
has two components. Since )Co, Xt are on the same component of  S, we have 
x0,1Xl,l > 0. Then 

xO, lX l , l (X  0 -~- xI)T A(Xo + Xl)  : 2XO, IXI,IXT AXI 

---- - - ( X l , l X o  - -  Xo,IXI)T A(xl,IXo -- xo, lX1) < O. 

Thus ()Co + x,)TA(Xo + X,)  < O. 
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(3) The case 

[ 1°1]]o 
Since Xo, X1 are real points on S, xo,d > 0 and Zl,d > 0. Then 

--(XO,d + 1)(Xl,d + 1)(No + x 1 ) T A ( X o  + Xl)  

= -2(xo,d  + l / (x , ,d  + llX AXl 
= [(Xl,d + 1)Xo - (Xo,a + 1)x1]TA[(Xl,d + 1)Xo - (X0,d + I )X, ]  

d--I 
"~- E [ (xl'd -'~ 1)X0 ' i -  (x0'd q- 1)XI'i]2 -- 

i=1 
- 2[(X,,d + 1)xo,d -- (xO,d + I)Xl,d] [(xl,d + 1) -- (Xo,d + 1)] 

d--1 
= E [(X,,d + 1)x0,i -- (X0,d + 1)Xz#] 2 + 2(X,,d -- XO,d) > O, 

i=l 

since Xo, X1 are distinct points. Thus ( X o + X I ) T A ( X o + X 1 )  < 0 since zo ,a+  l > 
0 and Xl,d + 1 > 0. Hence for the three quadrics the segment XoX1 is inside the 
surface. 

Let L = Qo N QI,  where Q0 and Q1 are the tangent hyperplanes of  S at X0 and 
XI ,  given by X~AX = 0 and X~AX = 0, respectively. Let Y~, i = 1 , . . . ,  d - l, be 
d - 1 affinely independent points in L. Similar to the Gram-Schmidt  orthogonalization 
process (Golub and Van Loan, 1989, p. 218), the Yi can be constructed so that y~TAyj = 
0 for i # j .  Let Z = /~X0 + #Xl  be a variable point on the straight line XoXI. 
Then ZTAYi = 0 for i = 1 , . . . , d -  1. Let B = [YI , . . . ,  Ya-J, Z]. Then BTAB = 
diag[Y1TAy~,. . . ,  YT1AYd_I , ZTAZ]. Since XTAX, ¢ 0, ZTAXo = #X~ AXo ¢ 0 or 

zTAxI = /XXToAX1 7/= 0; therefore Z ~ L. So B has rank d. By Lemma A. 1, BTAB has 
at least d - 1 positive eigenvalues since A has d positive eigenvalues. Since Z changes 
sign at X0 or Xl ,  it can be chosen so that ZTAZ < 0; therefore the y/TAy/ > 0. Thus 
y T A y  > 0 for any Y E L. Hence when S is any of the three quadrics, for any Y E L, 
the line segment XoXl and Y are on opposite sides of  S. 

Now consider the remaining case, i.e., the quadrics XTAX = 0 with p ~> 2 and r ~> 2. 
Let 13 = [Y l , . . . ,  Yd-1, Z] be the same as constructed above. For the same reason, B has 
rank d and BTAB = d i a g [ y T A Y s , . . . ,  Yf_jAYa-~, ZTAZ]. In this case, by Lemma A. l, 
BTAB has at least one positive eigenvalue and one negative eigenvalue; so it is indefinite. 
Therefore the y / T A y / d o  not have the same sign; for otherwise, choosing ZTAZ to have 
the same sign as the y/TAy/, BTAB would become positive or negative definite, a 
contradiction. Since the y / T A y / h a v e  different signs, there exists Y E L such that XoX1 
and Y are on opposite sides of  S. Then the lemma follows from Theorem 2.3. [] 
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